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概要
1970年, T. M. Apostol [1]はMöbius関数の一般化として Apostol Möbius関数 µk (k ∈ N)
を導入し, 漸近公式 ∑

n≤x µk(n) = Akx + O(x1/k log x) を与えた. 1977 年, D. Surya-

narayana [6] は Riemann 予想下で誤差評価が O(x4k/(4k2+1) exp(A log x(log log x)−1)) にな
ることを示した. ここで Aはある正の絶対定数である. A. Bege [4]は 2001年に誤差項の評価に
関して 2つの予想を立てた. D. Banerjee, Y. Fujisawa, T. M. Minamide, Y. Tanigawa [3]は
1つ目の Bege予想を部分的に解決した. もう一方の予想を部分的に解くことができたため, 本発
表ではこれを紹介する. また, 誤差項の 2乗平均についても紹介する.

1 導入
Nを正の整数全体の集合, Cを複素数全体の集合とする.

定義 1.1. 定義域が Nで終域が Cであるような関数を数論的関数という.

例 1.2. 次で定義される数論的関数 µをMöbius関数という:

µ(n) :=


1 n = 1のとき,

(−1)r nが相異なる r 個の素数の積であるとき,

0 その他.

定義 1.3. 2つの数論的関数 f, g に対して, 数論的関数 f ∗ g を

(f ∗ g)(n) :=
∑
dq=n

f(d)g(q), n ∈ N

と定め, f と g のDirichlet畳み込み積という.

例 1.4. 正の整数 nに対して φ(n)を n以下の正の整数であって nと互いに素なものの個数とする
とき φ = id ∗µである. 但し

id(n) = n, n ∈ N

とする.
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例 1.5. 正の整数 nに対して θ(n)を nの平方因子を持たない正の約数の個数とするとき θ = |µ| ∗ 1
である. 但し

|µ|(n) := |µ(n)|, 1(n) := 1, n ∈ N

とする.

2 先行研究
T. M. Apostol [1]は 1970年にMöbius関数の一般化として次の数論的関数を定義した.

定義 2.1. 次で定義される数論的関数 µk (k ∈ N)をApostol Möbius関数という:

µk(n) :=


1 n = 1のとき,

0 ある素数 pに対して pk+1 | nとなるとき,

(−1)r n = (p1p2 · · · pr)k
∏

i>k p
ai
i (0 ≤ ai < k)とかけるとき,

1 その他.

k = 1のとき, Apostol Möbius関数 µk は通常のMöbius関数と一致する. すなわち, µ1 = µが成
り立つ.

さらに, T. M. Apostol [1]は Apostol Möbius関数の部分和に対して次の漸近公式を得た:

定理 2.2. 実数 x ≥ 2と整数 k ≥ 2に対して∑
n≤x

µk(n) = Akx+O
(
x1/k log x

)
が成り立つ. ここで

Ak :=
∏
p:素数

(
1− 2

pk
+

1

pk+1

)
である.

D. Suryanarayana [6]は 1977年に Riemann予想の仮定の下で次を示した:

定理 2.3. ある絶対定数 A > 0が存在して, 実数 x ≥ 3と整数 k ≥ 2に対して
∑
n≤x

µk(n) = Akx+O
(
x4k/(4k

2+1)ω(x)
)
, ω(x) := exp

(
A

log x

log log x

)
が成り立つ.

A. Bege [4]は 2001年に次を予想した:



予想 2.4. (1) ある絶対定数 D > 0が存在して, 実数 x ≥ 3と整数 k ≥ 2, n ≥ 1に対して∑
r≤x

(r,n)=1

µk(r) = Ak,nx+ Ek,n(x),

Ek,n(x) = O
(
θ(n)x1/kδ(x)

)
,

δ(x) := exp

(
−D (log x)3/5

(log log x)1/5

)
が成り立つ. ここで

Ak,n :=
φ(n)

n

∏
p:素数
p∤n

(
1− 2

pk
+

1

pk+1

)

である. 特に, n = 1のとき ∑
r≤x

µk(r) = Akx+O
(
x1/kδ(x)

)
が成り立つ.

(2) Riemann予想を仮定する. このとき, 実数 x ≥ 3と整数 k ≥ 2, n ≥ 1に対して

Ek,n(x) = O
(
θ(n)x2/(2k+1)ω(x)

)
が成り立つ. 特に, n = 1のとき∑

r≤x

µk(r) = Akx+O
(
x2/(2k+1)ω(x)

)
が成り立つ.

D. Banerjee, Y. Fujisawa, T. M. Minamide, Y. Tanigawa [3]は 2023年に次を示した:

定理 2.5. 実数 x ≥ 3と整数 k ≥ 2に対して
∑
n≤x

µk(n) = Akx+Ok

(
x1/kδk(x)

)
, δk(x) := exp

(
−Dk

(log x)3/5

(log log x)1/5

)
が成り立つ. ここで Dk > 0は k のみに依存する定数である.

これは Bege予想 (1)の k 依存版の n = 1の場合の肯定的解決である.

3 準備
主結果を示すにあたり必要な補題を用意する.

補題 3.1. 整数 k ≥ 2に対して µk = fk ∗ ck である. ここで

fk(n) :=
∑

dkδ=n

(µ ∗ µ)(d), n ∈ N



であり, ck は
∞∑

n=1

ck(n)

ns
=

∏
p:素数

1− 2p−ks + p−(k+1)s

(1− p−ks)2
, Re s > 1/(k + 1)

を満たす数論的関数である.

次の補題の証明は E. Cohen [5]の Lemma 3.4を見られたい.

補題 3.2. 実数 x ≥ 1と整数 n ≥ 1に対して

φ(x, n) :=
∑
r≤x

(r,n)=1

1 =
φ(n)

n
x+O(θ(n))

が成り立つ.

補題 3.3. Riemann予想を仮定するとき, ある絶対定数 A > 0が存在して, 実数 x ≥ 1と整数 n ≥ 1

に対して

M̃n(x) :=
∑
r≤x

(r,n)=1

µ̃(r) = O
(
θ(n)x1/2ω̃(x)

)
, ω̃(x) := exp

(
A

log ξ

log log ξ

)

が成り立つ. ここで µ̃ = µ ∗ µ, ξ = x+ ee
2 である.

系 3.4. Riemann予想を仮定するとき, 実数 x ≥ 1と整数 n ≥ 1, k ≥ 2に対して∑
r≤x

(r,n)=1

µ̃(r)

rk
=
φ2(n)ψ2

k(n)

n4ζ2(k)
+O

(
θ(n)x1/2−kω̃(x)

)

が成り立つ. ここで

ψk(n) := n
∏
p|n

(
1 +

1

p
+ · · ·+ 1

pk−1

)
,

ζ(k) :=
∞∑

m=1

1

mk

である.

補題 3.5. 実数 x ≥ 1に対して ∑
n≤x

|µ̃(n)| = O(xω̃(x))

が成り立つ.

次の補題は [2, Theorem 3.2]から直ちに従う:

補題 3.6. 実数 x ≥ 1, 0 < σ < 1に対して∑
n≤x

n−σ = O

(
x1−σ

1− σ

)
が成り立つ.



補題 3.7. 実数 x ≥ 1と整数 k ≥ 2, n ≥ 1に対して
∑
d≤x

(d,n)=1

ck(d)

d
=

∞∑
d=1

(d,n)=1

ck(d)

d
+O

(
kx2/(2k+1)−1

)

が成り立つ.

補題 3.8. 整数 k ≥ 2に対して
∞∑

n=1

|ck(n)|
n2/(2k+1)

= O(k)

が成り立つ.

補題 3.9. 整数 k ≥ 2, n ≥ 1に対して

ψ2
k(n) = O

(
n2θ(n)

)
が成り立つ.

4 主結果
以上をもとに主結果を述べる.

主定理. k 依存版の Bege予想は正しい. すなわち以下の 2つが成立する:

(1) 実数 x ≥ 3と整数 k ≥ 2, n ≥ 1に対して

Ek,n(x) = Ok

(
θ(n)x1/kδk(x)

)
が成り立つ.

(2) Riemann予想を仮定する. このとき, 実数 x ≥ 3と整数 k ≥ 2, n ≥ 1に対して

Ek,n(x) = Ok

(
θ(n)x2/(2k+1)ω(x)

)
が成り立つ.

Proof. ここでは (2)のみ示す. 以下 Riemann予想を仮定する.

まず fk の部分和を評価する. z = x1/k, x−1/k ≤ ρ ≤ 1として, 部分和を次のように分解する:∑
r≤x

(r,n)=1

fk(r) =
∑

dkδ≤x
(d,n)=(δ,n)=1

µ̃(d)

=


∑

dkδ≤x
d≤ρz

(d,n)=(δ,n)=1

+
∑

dkδ≤x

δ≤ρ−k

(d,n)=(δ,n)=1

−
∑
d≤ρz

δ≤ρ−k

(d,n)=(δ,n)=1

µ̃(d)
= S1 + S2 − S3.



そしてこれらを評価する.

補題 3.2, 補題 3.3, 系 3.4, 補題 3.5より

S1 =
∑
d≤ρz

(d,n)=1

µ̃(d)φ
( x
dk
, n

)

=
φ(n)

n
x

∑
d≤ρz

(d,n)=1

µ̃(d)

dk
+O

θ(n) ∑
d≤ρz

(d,n)=1

|µ̃(d)|


=
φ2(n)ψ2

k(n)

n4ζ2(k)

φ(n)

n
x+O

(
θ(n)(ρz)1/2ω̃(x)ρ−k

)
+O(θ(n)ρzω̃(x))

である. ここで ω̃ が単調増加関数であることに注意する.

補題 3.3, 補題 3.6より

S2 =
∑

δ≤ρ−k

(δ,n)=1

M̃n

((x
δ

)1/k
)

= O

θ(n)x1/(2k)ω̃(x) ∑
δ≤ρ−k

(δ,n)=1

1

δ1/(2k)


= O

(
θ(n)(ρz)1/2ω̃(x)ρ−k

)
である.

補題 3.3より

S3 = M̃n(ρz)φ
(
ρ−k, n

)
= O

(
θ(n)(ρz)1/2ω̃(x)ρ−k

)
である. 以上より

ρ = z−1/(2k+1) = x−k/(2k+1)

とおけば ∑
r≤x

(r,n)=1

fk(r) =
φ2(n)ψ2

k(n)

n4ζ2(k)

φ(n)

n
x+O

(
θ(n)x2/(2k+1)ω̃(x)

)

を得る.



最後に, 補題 3.1, 補題 3.7, 補題 3.8, 補題 3.9より∑
r≤x

(r,n)=1

µk(r) =
∑
dδ≤x

(d,n)=(δ,n)=1

ck(d)fk(δ)

=
∑
d≤x

(d,n)=1

ck(d)
∑

δ≤x/d
(δ,n)=1

fk(δ)

=
φ2(n)ψ2

k(n)

n4ζ2(k)

φ(n)

n
x

∑
d≤x

(d,n)=1

ck(d)

d
+O

θ(n)x2/(2k+1)ω̃(x)
∑
d≤x

(d,n)=1

|ck(d)|
d2/(2k+1)


=
φ2(n)ψ2

k(n)

n4ζ2(k)

φ(n)

n

∞∑
d=1

(d,n)=1

ck(d)

d
x+O

(
kθ(n)x2/(2k+1)ω̃(x)

)

が成り立つ.

そして
Ak,n =

φ2(n)ψ2
k(n)

n4ζ2(k)

φ(n)

n

∞∑
d=1

(d,n)=1

ck(d)

d

は容易にわかる.

最後に x ≥ 3のとき
ω̃(x) = O(ω(x))

だから, 題意を得る.

参考文献
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[4] A. Bege, A generalization of Apostol’s Möbius functions of order k, Publ Math Debrecen.

58 (2001), 293–301.

[5] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math.

Z. 74 (1960), 66–80.

[6] D. Suryanarayana, On a theorem of Apostol concerning Möbius functions of order k, Pacific
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